Abstract
The ubiquitous bacterial pathogen, Staphylococcus aureus, expresses a large arsenal of virulence factors essential for pathogenesis. The phenol-soluble modulins (PSMs) are a family of cytolytic peptide toxins which have multiple roles in staphylococcal virulence. To gain an insight into which specific factors are important in PSM-mediated cell membrane disruption, the lytic activity of individual PSM peptides against phospholipid vesicles and T cells was investigated. Vesicles were most susceptible to lysis by the PSMα subclass of peptides (α1–3 in particular), when containing between 10 and 30mol% cholesterol, which for these vesicles is the mixed solid ordered (so)–liquid ordered (lo) phase. Our results show that the PSMβ class of peptides has little effect on vesicles at concentrations comparable to that of the PSMα class and exhibited no cytotoxicity. Furthermore, within the PSMα class, differences emerged with PSMα4 showing decreased vesicle and cytotoxic activity in comparison to its counterparts, in contrast to previous studies. In order to understand this, peptides were studied using helical wheel projections and circular dichroism measurements. The degree of amphipathicity, alpha-helicity and properties such as charge and hydrophobicity were calculated, allowing a structure–function relationship to be inferred. The degree of alpha-helicity of the peptides was the single most important property of the seven peptides studied in predicting their lytic activity. These results help to redefine this class of peptide toxins and also highlight certain membrane parameters required for efficient lysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.