Abstract

It has been suggested that gravitational potential can have a significant role in suppressing star formation in nearby galaxies. To establish observational constraints on this scenario, we investigated the connection between the dynamics – taking the circular velocity curves (CVCs) as a proxy for the inner gravitational potential – and star formation quenching in 215 non-active galaxies across the Hubble sequence from the Calar Alto Legacy Integral Field Area (CALIFA) survey. Our results show that galaxies with similar CVCs tend to have a certain star-formation quenching pattern. To explore these findings in more details, we constructed kiloparsec(kpc)-resolved relations of the equivalent width of the Hα (WHα) versus the amplitude (Vc) and shape (β = dlnVc/dlnR) of the circular velocity at given radii. We find that the WHα − Vc is a declining relationship, where the retired regions of the galaxies (the ones with WHα values of below 3 Å) tend to have higher Vc. Concurrently, WHα − β is a bimodal relationship, which is characterised by two peaks: concentration of the star forming regions at a positive β (rising CVC) and a second concentration of the retired regions with a negative β (declining CVC). Our results show that both the amplitude of the CVC – driven by the mass of the galaxies – and its shape – which reflects the internal structure of the galaxies – play an important role in the quenching history of a galaxy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.