Abstract

The influence of geometric configurations and loading modes is a bottleneck that restricts the accurate determination of rock fracture parameters and the precise understanding of fracture mechanisms. Therefore, the phase field method is employed to analyze the influences of specimen geometry and loading modes on the dimensionless stress intensity factors, peak load, fracture toughness, and crack initiation angle during the rock mixed mode I/II fracture process. Three new configurations of specimens are proposed to test rock mixed mode I/II fracture. The research results indicate that as the prefabricated crack inclination angle increases, the peak load of three-point bending type specimen increases, while the peak load of diametric-compression type specimen decreases. Moreover, the influence of geometric configurations on the fracture parameters of three-point bending specimens is greater than that of diametric-compression disk specimens. The research findings of this work can provide basic supporting data for the establishment of mixed mode I/II fracture testing standards.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.