Abstract

Advances in high-throughput technologies along with the curation of small-scale experiments has aided in the construction of reference maps of the interactome. These maps are critical to our understanding of genotype-phenotype relationships and disease. However, our knowledge of disease associated genes and the map of the human interactome still remains incomplete. In this study we investigate whether protein–protein interaction networks (PPINs) constructed from either experimental or curated data have an impact upon disease network analysis. An integrative network-driven framework is implemented to integrate diverse heterogeneous data including: gene-expression, PPIN, ontology-based similarity, degree connectivity and betweenness centrality measures to uncover potential Alzhemier disease (AD) candidate genes. Two PPINs have been selected and constructed from (1) experimental high-throughput data and (2) literature-curated sources. Only a marginal overlap of protein pairs between the two PPINs (305 protein pairs) was observed. A total of 17 significant AD gene candidate genes were identified using the literature derived PPIN compared to 20 genes using the PPIN constructed from high-throughput data. Both approaches correctly identified the AD susceptible TRAF1, a critical regulator of cerebral ischaemia–reperfusion injury and neuronal death. Biological process enrichment analysis revealed genes candidates from the literature based PPIN are modulated in AD pathogenesis such as neuron differentiation and involved in KEGG pathways such as neurotrophin signaling pathways. Tissue specific analysis revealed 48 % of AD gene candidates obtained from the literature curated PPIN were expressed in tissues where AD is observed compared to 19 % of gene candidates extracted using the high-throughput PPIN.

Highlights

  • Both physical and genetic interaction networks have been instrumental in providing valuable insights into complex biological systems

  • In this study we investigate whether protein–protein interaction networks (PPINs) constructed from either experimental or curated data have an impact upon disease network analysis

  • The Differentially expressed (DE) genes were used as input into the construction of the Alzhemier disease (AD) specific PPINs

Read more

Summary

Introduction

Both physical and genetic interaction networks have been instrumental in providing valuable insights into complex biological systems. These insights include understanding how different processes communicate through to knowledge of protein function [4]. Public interaction databases including: BioGRID [6], Human Protein Reference Database (HPRD) [28], IntAct [27], Database of Interacting Proteins (DIP) [40] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [26] store many interaction and pathway data across diverse organisms [23] All these data have been useful as a means to understanding the underlying mechanisms of a cell.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call