Abstract

There are several potent measures for mining the relationships among actors in social network analysis. Betweenness centrality measure is extensively utilized in network analysis. However, it is quite time-consuming to compute exactly the betweenness centrality in high dimensional social networks. Applying random projection approach, an approximation algorithm for computing betweenness centrality of a given node, is proposed in this paper, for both weighted and unweighted graphs. It is proved that the proposed method works better than the existing methods to approximate the betweenness centrality measure. The proposed algorithm significantly reduces the number of single-source shortest path computations. We test the method on real-world networks and a synthetic benchmark and observe that the proposed algorithm shows very promising results based on statistical evaluation measure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.