Abstract
Although they are primarily installed for specific applications, decentralised energy systems, storage systems, and controllable loads can provide flexibility. However, this varies over time. This study investigates the fundamentals of flexibility provision, including quantification, aggregation, simulation, and impact on energy systems and the power grid. We extended our methods by integrating adjustments to calculate the flexibility potential of heat pumps (HPs) and heat storage (HS) systems, as well as by incorporating variability and uncertainty. The simulations revealed the relevance of energy systems operation to flexibility, e.g., 2 K deviation in HS temperature increased theoretical coverage by 16 percentage points. The results also proved that aggregating multiple systems could obviously enhance their flexibility potential, e.g., six investigated battery storage (BS) systems could have covered up to 20 percentage points more external flexibility requests than any individual unit. The provision of flexibility by decentralised energy systems can lead to energy surpluses or deficits. Such imbalances could have been fully balanced in a system- and grid-oriented manner in 44% of BS simulations and in 32% of HP-HS ones. Overall, the findings highlight the importance of the system- and grid-oriented operation of decentralised energy systems, alongside local optimisation, for a future energy infrastructure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.