Abstract

Heavy haze pollution has occurred frequently in the past few years in Northeast China during winters, which was distinct from other regions in China because of the particular meteorological conditions. In this study, we analyzed the temporal variation, source appointment, and influencing factors of PM2.5 from December 1, 2018 to February 28, 2019 in Harbin. The results showed obvious differences between the non-haze and haze periods. The source appointment based on a single-particle aerosol mass spectrometer showed that coal combustion, vehicle emissions, biomass burning, and secondary inorganic aerosols (SIAs) were the major contributors of PM2.5. It is interesting that from the non-haze to the haze period, contributions of coal combustion and SIAs increased (from 20.2% to 27.3%, and from 17.3% to 18.9%, respectively) while other sources decreased or increased little. It indicated the primary pollutants from heating supply were the most important contributor to haze formation due to the low temperature. Furthermore, from levels I (0 < PM2.5 ≤ 75 μg m−3) to III (115 < PM2.5 ≤ 150 μg m−3), SIAs increased from 15.3% to 19.4% (increased 4.1%), while coal combustion from 23.7% to 27.1% and increased 3.4%. It implied clearly that SIAs played a comparable role in the early stage of the evolution of haze episode as that of coal combustion. Combining data on prevailing winds and results of potential source contribution function indicated that PM2.5 during the haze period was primarily influenced by the air masses originating from the southwestern areas via regional transport. A positive correlation was observed between relative humidity (RH) and haze pollution when RH ≥ 60%, indicating that hygroscopic growth may be the principal factor promoting secondary formation. CapsuleCoal combustion was the most important source in Harbin due to the low temperature, and secondary aerosols promoted the early stage of the haze evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.