Abstract

The increasing penetration of wind generation impacts the reliability and stability of power systems. This paper investigates and analyses the effect of PID controller parameters on the inertial response of a doubly fed induction generator (DFIG) wind turbine to support the frequency control of a power system in the event of sudden power changes. The goal of this review is to extensively determine the effect of PID parameters to compare and set a benchmark so that an adaptive control strategy can be developed for frequency regulation. A conventional inertial controller algorithm using the rate of change of frequency (RoCoF) and frequency deviation loops was investigated whilst the contribution of the DFIG to system inertial response and frequency control are examined. The paper considers the influence of supplementary inertial control loop parameters on the inertial response and power system frequency. The results indicate that the DFIG inertial controller scheme is able to provide appropriate frequency support.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call