Abstract
The identification of humans constitutes a crucial component of monitoring systems, given the significance of the timely detection of individuals. Despite advancements in people detection systems, detecting humans at long distances remains challenging. In this study, we employed the Region-based Convolutional Neural Network (RCNN) approach to training a system on images captured at varying distances between the camera and individuals. The results demonstrate promising outcomes, with the system achieving a maximum detection recall of 1 for identifying people at distances of up to 40 meters and maximum precision of 1 for identifying people at distances of up to 50 meters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.