Abstract

This letter investigates the degradation mechanism of amorphous indium-gallium-zinc oxide thin-film transistors under gate-bias stress. The larger Vt shift under positive AC gate-bias stress when compared to DC operation indicates that an extra electron trapping mechanism occurs during rising/falling time during the AC pulse period. In contrast, the degradation behavior under illuminated negative gate-bias stress exhibits the opposite degradation tendency. Since electron and hole trapping are the dominant degradation mechanisms under positive and illuminated negative gate-bias stress, respectively, the different degradation tendencies under AC/DC operation can be attributed to the different trapping efficiency of electrons and holes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call