Abstract

Although clonal plants comprise most of the biomass of several widespread ecosystems, including many grasslands, wetlands, and tundra, our understanding of the effects of clonal attributes on community patterns and processes is weak. Here we present the conceptual basis for experiments focused on manipulating clonal attributes in a community context to determine how clonal characteristics affect interactions among plants at both the individual and community levels. All treatments are replicated at low and high density in a community density series to compare plant responses in environments of different competitive intensity. We examine clonal integration, the sharing of resources among ramets, by severing ramets from one another and comparing their response to ramets with intact connections. Ramet aggregation, the spacing of ramets relative to each other, is investigated by comparing species that differ in their natural aggregation (either clumped growth forms, with ramets tightly packed together, or runner growth forms, with ramets loosely spread) and by planting individual ramets of all species evenly spaced throughout a mesocosm. We illustrate how to test predictions to examine the influence of these two clonal traits on competitive interactions at the individual and community levels. To evaluate the effect of clonal integration on competition, we test two predictions: at the individual level, species with greater clonal integration will be better individual-level competitors, and at the community level, competition will cause a greater change in community composition when ramets are integrated (connected) than when they are not. For aggregation we test at the individual level: clumped growth forms are better competitors than runner growth forms because of their ability to resist invasion, and at the community level: competition will have a greater effect on community structure when ramets are evenly planted. An additional prediction connects the individual- and community-level effects of competition: resistance ability better predicts the effects of competition on relative abundance in a community than does invasion ability. We discuss additional experimental design considerations as revealed by our ongoing studies. Examining how clonal attributes affect both the individual- and community-level effects of competition requires new methods and metrics such as those presented here, and is vital to understanding the role of clonality in community structure of many ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.