Abstract
Hydrophilic zeolites with low catalytic activity are considered as suitable adsorbents for drying gas streams containing olefinic compounds. In this contribution, the surface treatment of kaolin and attapulgite/zeolite A extrudates is investigated using argon glow discharge plasma. The zeolite is synthesized from kaolin using the hydrothermal method. Surface and bulk characterization is performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 physisorption, Fourier-transform infrared (FT-IR) spectroscopy, temperature-programmed-desorption (TPD) of NH3 and X-ray photoelectron spectroscopy (XPS) techniques. Plasma treatment increases surface area and pore volume, but it decreases the weak acidic site density of the extrudates. The obtained results show that attapulgite/zeolite extrudates are more affected by plasma treatment than kaolin/zeolite extrudates. The catalytic activity of untreated and plasma-treated extrudates are compared with respect to coke formation resulting from 1-butene and 1,3-butadiene. The plasma-treated sample is more resistant to coke formation (∼35% decrease compared to untreated one). The potassium contents of extrudates decreased as a result of sputtering loosely bound potassium cations on the crystal surface by argon ions, which led to a decrease in water sorption capacity (by ∼15% of the initial sorption capacity).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.