Abstract

Background: Type 2 diabetes mellitus is a chronic disease that diminishes the body’s ability to regulate glucose levels due to the lack of insulin produced. In recent studies, squalene has been reported to have beneficial effects for diabetic patients, especially within the liver where the urea cycle takes place.Objective: Our main goal was to evaluate the molecular effects of different doses of squalene on the enzymes, intermediates, and molecules of the urea cycle, in order to determine if squalene has beneficial effects among groups of people with type 2 diabetes mellitus. The enzymes and molecules that are being studied are ornithine transcarbamylase (OTC), arginosuccinate synthetase (ASS), arginase, carbamoyl-phosphate synthetase 1 (CSP1), urea, aspartate, and ammonium ion (NH4+).Methods: In this study, healthy volunteers were categorized as the healthy control (group 1) and volunteers with type 2 diabetes mellitus were selected. The patients with diabetes were divided up into 4 groups. Group 2 consists of the patients that will not be treated with squalene. Groups 3, 4, 5 were treated with 200, 400, 600 mg, respectively. The patients were treated with their respective amounts every 14 days for the duration of 84 days. The enzymes and molecules were measured on days 1, 14, 28, 56, and 84.Results: The squalene-treated diabetic groups were compared to group 2, who was not treated with any squalene to determine the differences between the parameters. Throughout the 84 days, it was observed that NH4+ or ammonium molecules decreased in all treated diabetic patients with high statistical difference (P < 0.05). For the majority of the diabetic patients treated with squalene, there was also a decrease in aspartate. The other parameters did not have consistent significant differences (P > 0.05).Conclusion: Based on the findings of this study, the addition of various doses of squalene to a diabetic patient’s diet decreased the amount of ammonium and aspartate in the body. As ammonium is the direct product of the urea cycle, it is evident that squalene does play a key role in reducing the amount of ammonium in a diabetic patient to a healthier level.Keywords: Diabetes mellitus, urea cycle, enzyme, metabolite, squalene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.