Abstract
In recent years, the anti-corrosive properties of natural extracts as environmentally friendly inhibitors have gained considerable interest. This study evaluates the potential of Marjoram (Origanum majorana L.) essential oil (OML), collected from Salé, Morocco, as a corrosion inhibitor for mild steel in 1 M HCl medium. The protection performance of OML was assessed using various electrochemical techniques, including potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS), as well as the weight loss method. The influence of OML concentration and temperature on the inhibition performance were investigated. OML demonstrated pronounced inhibitory benefits via increasing the corrosion resistance of mild steel in the corrosive HCl solution, thus reducing the corrosion rate to 0.11 mg cm−2 h−1 and increasing the inhibition efficiency to 87.1% at an inhibitor concentration of 500 ppm. PDP confirmed that the inhibitor works as a mixed-type inhibitor with cathodic supremacy. EIS revealed that the charge transfer mechanism is the main controlling factor for the corrosion process. The thermodynamic parameters suggested a key role of OML physisorption in inhibition, following the Langmuir isotherm. Importantly, SEM and EDX analyses suggested the formation of a protective layer of the extract onto the steel surface, which shields the surface from corrosive species. This is owed to the functional group-rich phytochemicals of OML. Therefore, the development of bio-based corrosion inhibitors is not only a step towards more eco-friendly industrial practices, but also meets the growing demand for sustainable materials in a world with constrained resources.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have