Abstract

We present a stable model for quark stars in Rastall-Rainbow (R-R) gravity. The structure of this configuration is obtained by utilizing an interacting quark matter equation of state. The R-R gravity theory is developed as a combination of two distinct theories, namely, the Rastall theory and the gravity's rainbow formalism. Depending on the model parameters (λ¯,η,Σ,Beff), the mass-radius relations are numerically computed for modified Tolman-Oppenheimer-Volkoff (TOV) equations with proper boundary conditions. The stability of equilibrium configuration has been checked through the static stability criterion, adiabatic index and the sound velocity. Our calculations predict larger maximum masses for quark stars, and the obtained results are compatible with accepted masses and radii values, including constraints from GW190814 and GW170817 events in all the studied cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.