Abstract

This work communicates a critical assessment on the analytical capability of the three silicon wafer-based substrates; crystalline silicon (c-Si), oxide-coated silicon (SiO2-Si), and nitride-coated silicon (Si3N4-Si), for dried-droplet analysis by laser-induced breakdown spectroscopy. The methodology consists of loading, drying and analyzing steps. First, nanoliter volume of droplets are manually loaded onto the substrate and dried at room temperature. Then, the dry residue is subjected to high peak power (1.15 GW/cm2) laser pulses focused outside the minimum focal point condition and luminescent plasma is spectroscopically analyzed. Results revealed that nitride-coated substrate exhibits strong enhancements in signal intensity for most emission lines of the analyte species investigated: Cd, Cr, Cu, Mn, and Pb. Surface reflectivity and surface morphology were comparatively investigated to explore enhanced analytical performance of nitride-coated substrates. Experimental conditions were optimized and growth curves for all the elements are found linear with minimum regression constant of 0.96. LOD's of 62 pg Cd, 1.5 pg Cr, 0.5 pg Cu, 2 pg Mn and 11 pg Pb, in absolute amounts, were obtained. The accuracy and precision of the methodology were tested on certified reference water sample (CRM-TMDW), and ICP-multi-element standard sample (ICP-MES). The surface enhancement effect observed on Si3N4 coated substrates has improved the analytical capability of laser-induced breakdown spectroscopy for liquid analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call