Abstract

The main aim of this work is to demonstrate the capability of laser-induced breakdown spectroscopy (LIBS) for the recognition and identification of archeological materials submerged in sea water at depths up to 30m. For this purpose, a remote LIBS instrument based on a fiber optic cable to deliver the laser beam energy has been evaluated. An air flux was applied to create a sample–air interface prior to laser ablation. This flux prevents the contact of sea water with the sample surface during the analysis. In this way, good quality LIBS spectra were obtained. Parametric studies in the laboratory such as gas flow pressure, beam focal conditions and angle of incidence, among others, were performed to optimize the best conditions for field analysis. Finally, real samples such as different bronzes containing a high oxidation degree were analyzed underwater in the Mediterranean Sea. The dependence of LIBS signal with the analysis depth was also studied. Results obtained in these field trials confirmed the capability of remote LIBS for in-situ analysis of underwater archeological samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.