Abstract
BackgroundSince 2014, seasonal malaria chemoprevention (SMC) with amodiaquine–sulfadoxine–pyrimethamine (AQ–SP) has been implemented on a large scale during the high malaria transmission season in Burkina Faso. This paper reports the prevalence of microscopic and submicroscopic malaria infection at the outset and after the first round of SMC in children under 5 years old in Bama, Burkina Faso, as well as host and parasite factors involved in mediating the efficacy and tolerability of SMC.MethodsTwo sequential cross-sectional surveys were conducted in late July and August 2017 during the first month of SMC in a rural area in southwest Burkina Faso. Blood smears and dried blood spots were collected from 106 to 93 children under five, respectively, at the start of SMC and again 3 weeks later. Malaria infection was detected by microscopy and by PCR from dried blood spots. For all children, day 7 plasma concentrations of desethylamodiaquine (DEAQ) were measured and CYP2C8 genetic variants influencing AQ metabolism were genotyped. Samples were additionally genotyped for pfcrt K76T and pfmdr1 N86Y, molecular markers associated with reduced amodiaquine susceptibility.Results2.8% (3/106) of children were positive for Plasmodium falciparum infection by microscopy and 13.2% (14/106) by nested PCR within 2 days of SMC administration. Three weeks after SMC administration, in the same households, 4.3% (4/93) of samples were positive by microscopy and 14.0% (13/93) by PCR (p = 0.0007). CYP2C8*2, associated with impaired amodiaquine metabolism, was common with an allelic frequency of 17.1% (95% CI 10.0–24.2). Day 7 concentration of DEAQ ranged from 0.48 to 362.80 ng/mL with a median concentration of 56.34 ng/mL. Pfmdr1 N86 predominated at both time points, whilst a non-significant trend towards a higher prevalence of pfcrt 76T was seen at week 3.ConclusionThis study showed a moderate prevalence of low-level malaria parasitaemia in children 3 weeks following SMC during the first month of administration. Day 7 concentrations of the active DEAQ metabolite varied widely, likely reflecting variability in adherence and possibly metabolism. These findings highlight factors that may contribute to the effectiveness of SMC in children in a high transmission setting.
Highlights
Since 2014, seasonal malaria chemoprevention (SMC) with amodiaquine–sulfadoxine–pyrimethamine (AQ–SP) has been implemented on a large scale during the high malaria transmission season in Burkina Faso
Results of Plasmodium infection detected by both microscopy and Polymerase Chain Reaction (PCR) are summarized in Table 1. 2.8% (3/106) of children were positive by microscopy and 13.2% (14/106) by nested PCR (p < 0.001)
Plasmodium falciparum was the only species detected in positive sample by both microscopy and PCR
Summary
Since 2014, seasonal malaria chemoprevention (SMC) with amodiaquine–sulfadoxine–pyrimethamine (AQ–SP) has been implemented on a large scale during the high malaria transmission season in Burkina Faso. In Burkina Faso, malaria is still the leading cause of morbidity and mortality with 7875,575 cases and 12,725 deaths in 2018 [1] With these statistics, Burkina Faso has one of the highest malaria incidence rates in the world, and is one ‘high burden to high impact’ countries of the World Health Organization (WHO). In 2014, the Burkinabe National Malaria Control Programme introduced seasonal malaria chemoprevention (SMC) with amodiaquine–sulfadoxine–pyrimethamine (AQ–SP). This strategy targets children aged 3–59 months, excluding those with known allergies to sulfonamides or AQ, those who received a dose of AQ or SP within the past month, those with known HIV-positive status and under cotrimoxazole treatment, and those severely ill or experiencing a presumptive malaria episode [2]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have