7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1080/00393630.2016.1236997
Copy DOIJournal: Studies in Conservation | Publication Date: Oct 14, 2016 |
Citations: 23 |
Salt crystallization is recognized as a major cause of damage to porous building materials, threatening the sustainable preservation of our valuable built heritage. Unfortunately, the crystallization behavior of the detected salt mixtures is complex and not fully understood. While the deliquescence points of single salts are well documented, this is not the case for salts in a mixture where one is confronted with the presence of different cations and anions. In this paper the salt content of the murals and the limestone tracery of the main entrance porch from the sixteenth century church of St. James in Liège, Belgium is investigated and related to the climatic conditions of its environment. Concerning the salt load, the research consists of hygroscopic moisture content measurements, quantitative ion analyses, and the prediction of phase equilibria using the thermodynamic model ECOS/RUNSALT. This model can predict the salt crystallization sequences of a particular ion mixture. The output is mathematically evaluated with collected temperature and relative humidity data, which enables the calculation of the number of salt crystallization–deliquescence cycles. The results show that even small amounts of salts can cause damage over a long period of time when the environment causes frequent cycles of crystallization–deliquescence over time. It is shown how a mixture of small amounts of (double) salts, including hygroscopic ones, can have a significant effect on the decay of historic building materials in the case of daily changing climatic conditions and periods of extreme drought. As a result, the crystallization of double salts and hygroscopic salts such as calcium nitrate cannot be ignored. The scientific method and the results are described.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.