Abstract

Chinese sprangletop (Leptochloa chinensis (L.) Nees) is a common grass species that severely threatens rice (Oryza sativa L.) cropping systems globally. Cyhalofop-butyl is a highly efficient acetyl-CoA carboxylase (ACCase)-inhibiting herbicide widely used for control of this species in China. However, some L. chinensis populations have gradually evolved resistance to this herbicide in recent years. To better understand the cyhalofop-butyl resistance status of L. chinensis in the major rice planting area of the middle-lower Yangtze River basin, 73 populations collected from the rice fields across Anhui Province were investigated for cyhalofop-butyl susceptibility and potential herbicide resistance-conferring mutations. Single-dose testing indicated that of the 73 populations, 25 had evolved resistance to cyhalofop-butyl and were separately classified as “RRR” and “RR” populations according to their fresh weight reductions, 8 had a high risk of evolving cyhalofop-butyl resistance and were classified as “R?” populations, and 40 were susceptible and classified as “S” populations. Whole-plant dose-response experiments showed that the resistance index (RI) of these R?, RR, and RRR populations to cyhalofop-butyl ranged from 2.47 to 36.94. Target gene sequencing identified seven ACCase resistance mutations (I1781L, W1999C, W2027S, W2027L, W2027C, I2041N, and D2078G), with W1999C and W2027C the two most common detected in about three quarters of all the resistant populations. Seven populations including LASC3, BBHY1, AQQS1, HFFD3, HFFD4, AQWJ1, and HFLJ6 each carrying a specific ACCase mutation were tested for their cross- and multiple-resistance patterns. Compared with a standard susceptible population HFLY1, the seven resistant populations showed distinct cross-resistance. All had low- to high-level cross-resistance to metamifop (RIs ranging from 6.16 to 17.65), fenoxaprop-P-ethyl (RIs ranging from 6.39 to 24.08), and quizalofop-P-ethyl (RIs ranging from 2.20 to 10.25), but responded differently to clodinafop-propargyl and clethodim. Multiple-resistance testing suggested that the seven resistant populations were all susceptible to the 4-hydroxyphenylpyruvate dioxygenase inhibitor tripyrasulfone, the protoporphyrinogen oxidase inhibitor oxyfluorfen, and the auxin mimic herbicide florpyrauxifen. In conclusion, this study has shown that cyhalofop-butyl resistance was prevalent in L. chinensis in Anhui Province, China, and target site mutation was one of the most common resistance mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.