Abstract

Chinese sprangletop [Leptochloa chinensis (L.) Nees] control is threatened by resistance to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides. In this study, a L. chinensis population, HFLJ18, that survived cyhalofop-butyl [aryloxyphenoxypropionate (APP) herbicide, CyB] treatment was collected from a rice field in Lujiang County, Anhui Province, China. This study aimed to evaluate the susceptibility of HFLJ18 to herbicides with different modes-of-action and investigate the potential mechanisms of resistance to CyB. The HFLJ18 population exhibited high levels of resistance to CyB (10.92-fold) and showed resistance to the ACCase inhibitors metamifop (4.63-fold) and fenoxaprop-P-ethyl (8.39-fold), but was susceptible to clethodim, pinoxaden, florpyrauxifen-benzyl, oxadiazon and pretilachlor. Target gene sequencing revealed a novel Trp-to-Gly substitution at codon position 2027 of ACCase in the resistant plants. Molecular docking revealed that the spatial structure of ACCase changed significantly following the substitution, as indicated by reduced H-bonds. A newly derived cleaved amplified polymorphic sequence (dCAPS) marker was subsequently developed to detect the Trp-2027-Gly mutation in the ACCase of L. chinensis. Additionally, pretreatment with the cytochrome P450 (P450) inhibitor piperonyl butoxide (PBO) and the glutathione S-transferase (GST) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) did not reverse resistance to CyB, suggesting that nontarget-site resistance mechanisms were not involved in CyB resistance in the HFLJ18 population. Overall, the resistance to CyB in the HFLJ18 population derived from the mutation of ACCase gene, and to the best of our knowledge, this is the first report of the ACCase Trp-2027-Gly mutation conferring resistance to ACCase-inhibiting herbicides in grass species. © 2024 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call