Abstract

The Drosophila neuropeptide, DPKQDFMRFamide, was previously shown to enhance excitatory junctional potentials (EJPs) and muscle contraction by both presynaptic and postsynaptic actions. Since the peptide acts on both sides of the synaptic cleft, it has been difficult to examine postsynaptic modulatory mechanisms, particularly when contractions are elicited by nerve stimulation. Here, postsynaptic actions are examined in 3rd instar larvae by applying peptide and the excitatory neurotransmitter, l-glutamate, in the bathing solution to elicit contractions after silencing motor output by removing the central nervous system (CNS). DPKQDFMRFamide enhanced glutamate-evoked contractions at low concentrations (EC50 1.3 nM), consistent with its role as a neurohormone, and the combined effect of both substances was supra-additive. Glutamate-evoked contractions were also enhanced when transmitter release was blocked in temperature-sensitive (Shibire) mutants, confirming the peptide's postsynaptic action. The peptide increased membrane depolarization in muscle when co-applied with glutamate, and its effects were blocked by nifedipine, an L-type channel blocker, indicating effects at the plasma membrane involving calcium influx. DPKQDFMRFamide also enhanced contractions induced by caffeine in the absence of extracellular calcium, suggesting increased calcium release from the sarcoplasmic reticulum (SR) or effects downstream of calcium release from the SR. The peptide's effects do not appear to involve calcium/calmodulin-dependent protein kinase II (CaMKII), previously shown to mediate presynaptic effects. The approach used here might be useful for examining postsynaptic effects of neurohormones and cotransmitters in other systems.NEW & NOTEWORTHY Distinguishing presynaptic and postsynaptic effects of neurohormones is a long-standing challenge in many model organisms. Here, postsynaptic actions of DPKQDFMRFamide are demonstrated by assessing its ability to potentiate contractions elicited by direct application of the neurotransmitter, glutamate, when axons are silent and when transmitter release is blocked. The peptide acts at multiple sites to increase contraction, increasing glutamate-induced depolarization at the cell membrane, acting on L-type channels, and acting downstream of calcium release from the sarcoplasmic reticulum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call