Abstract

Climate change and urbanization have altered regional hydro-environments. Yet, the impact of future changes on the pollution risk and associated mitigation strategies requires further exploration. This study proposed a hydraulic and water-quality modeling framework, to investigate the spatiotemporal characteristics of pollution risk mitigation by low impact development (LID) strategies under future Representative Concentration Pathways (RCP) and Shared Socioeconomic Pathways (SSP) scenarios. Results demonstrated that the LID strategies exhibited an effective performance of pollutant removal in the current hydro-environment, with the removal rates ranging from 33% to 56%. In future climate and urbanization scenarios, the LID performance declined and turned to be uncertain as the greenhouse gas (GHG) emissions increased, with the removal rates ranging from 12% to 59%. Scenario analysis suggested that the LID performance was enhanced by a maximum of 73% through the diversified implementation of LID practices, and the performance uncertainty was reduced by a maximum of 67% through the increased LID deployment. In addition, comparative analysis revealed that the LID strategies in a well-developed region (Dresden, Germany) were more resilient in response to changing environments, while the LID strategy in a high-growth region (Chaohu, China) exhibited a better pollutant removal performance under low-GHG scenarios. The methods and findings in this study could provide additional insights into sustainable water quality management in response to climate change and urbanization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.