Abstract

The advent of optogenetics has given neuroscientists the opportunity to excite or inhibit neuronal population activity with high temporal resolution and cellular selectivity. Thus, when combined with recordings of neuronal ensemble activity in freely moving animals optogenetics can provide an unprecedented snapshot of the contribution of neuronal assemblies to (patho)physiological conditions in vivo. Still, the combination of optogenetic and silicone probe (or tetrode) recordings does not allow investigation of the role played by voltage- and transmitter-gated channels of the opsin-transfected neurons and/or other adjacent neurons in controlling neuronal activity. We demonstrate that optogenetics and silicone probe recordings can be combined with intracerebral reverse microdialysis for the long-term delivery of neuroactive drugs around the optic fiber and silicone probe. In particular, we show the effect of antagonists of T-type Ca(2+) channels, hyperpolarization-activated cyclic nucleotide-gated channels and metabotropic glutamate receptors on silicone probe-recorded activity of the local opsin-transfected neurons in the ventrobasal thalamus, and demonstrate the changes that the block of these thalamic channels/receptors brings about in the network dynamics of distant somatotopic cortical neuronal ensembles. This is the first demonstration of successfully combining optogenetics and neuronal ensemble recordings with reverse microdialysis. This combination of techniques overcomes some of the disadvantages that are associated with the use of intracerebral injection of a drug-containing solution at the site of laser activation. The combination of reverse microdialysis, silicone probe recordings and optogenetics can unravel the short and long-term effects of specific transmitter- and voltage-gated channels on laser-modulated firing at the site of optogenetic stimulation and the actions that these manipulations exert on distant neuronal populations.

Highlights

  • New method and results: We demonstrate that optogenetics and silicone probe recordings can be combined with intracerebral reverse microdialysis for the long-term delivery of neuroactive drugs around the optic fiber and silicone probe

  • We show the effect of antagonists of T-type Ca2+ channels, hyperpolarization-activated cyclic nucleotide-gated channels and metabotropic glutamate receptors on silicone probe-recorded activity of the local opsin-transfected neurons in the ventrobasal thalamus, and demonstrate the changes that the block of these thalamic channels/receptors brings about in the network dynamics of distant somatotopic cortical neuronal ensembles

  • This can be achieved by implanting a silicone probe stereotaxically in the VB to monitor the firing of TC neurons while delivering the drug via reverse microdialysis from a neighboring, stereotaxically implanted probe (Fig. 1A1 and A2)

Read more

Summary

Introduction

Optic fibers connected to different kinds of recording electrodes, i.e. tetrodes (“optetrodes”) (Anikeeva et al, 2012), silicone probes (“optrodes”) (Kravitz et al, 2010; Royer et al, 2010) or other types (Klorig and Godwin, 2014), have been successfully developed Notwithstanding these technical advances, the need remains to understand how the voltage- and transmitter-gated channels of the opsin-containing neurons contribute to any given (patho)physiological condition. To address this issue, a recent study has used an optic fiber attached to a metal electrode and a glass capillary for the delivery of a solution containing a selective GABAA receptor antagonist (i.e. bicuculline methiodide) to the opsintransfected population (Berglind et al, 2014). Conclusions: The combination of reverse microdialysis, silicone probe recordings and optogenetics can unravel the short and long-term effects of specific transmitter- and voltage-gated channels on lasermodulated firing at the site of optogenetic stimulation and the actions that these manipulations exert on distant neuronal populations

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.