Abstract
The objective of this study was to demonstrate the utility of an established model of human motor behavior for assessing the fidelity of a virtual reality (VR) and haptic-based simulation for fine motor task performance. This study was also to serve as a basis for formulating general performance-based simulator-design guidelines toward balancing perceived realism with simulator limitations, such as latency resulting from graphic and haptic renderings. A low-fidelity surgical simulator was developed as an example VR for study, and user performance was tested in a simplified tissue-cutting task using a virtual scalpel. The observed aspect of the simulation included a discrete-movement task under different system-lag conditions and settings of task difficulty. Results revealed user performance in the VR to conform with Fitts' law of motor behavior and for performance to degrade with increasing task difficulty and system time lag. In general, the findings of this work support predictions on human performance under various simulator-design conditions using an established model of motor-control behavior and formulation of human-performance-based simulator-design principles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have