Abstract
Structures vibrate with their natural frequencies when disturbed from their equilibrium position. These frequencies reduce when an additional mass accumulates on their structures, like ice accumulation on wind turbines installed in cold climate sites. The added mass has two features: the location and quantity of mass. Natural frequencies of the structure reduce differently depending on these two features of the added mass. In this work, a technique based on an artificial neural network (ANN) model is proposed to identify added mass by training the neural network with a dataset of natural frequencies of the structure calculated using different quantities of the added mass at different locations on the structure. The proposed method is demonstrated on a non-rotating beam model fixed at one end. The length of the beam is divided into three zones in which different added masses are considered, and its natural frequencies are calculated using a finite element model of the beam. ANN is trained with this dataset of natural frequencies of the beam as an input and corresponding added masses used in the calculations as an output. ANN approximates the non-linear relationship between these inputs and outputs. An experimental setup of the cantilever beam is fabricated, and experimental modal analysis is carried out considering a few added masses on the beam. The frequencies estimated in the experiments are given as an input to the trained ANN model, and the identified masses are compared against the actual masses used in the experiments. These masses are identified with an error that varies with the location and the quantity of added mass. The reason for these errors can be attributed to the unaccounted stiffness variation in the beam model due to the added mass while generating the dataset for training the neural network. Therefore, the added masses are roughly estimated. At the end of the paper, an application of the current technique for detecting ice mass on a wind turbine blade is studied. A neural network model is designed and trained with a dataset of natural frequencies calculated using the finite element model of the blade considering different ice masses. The trained network model is tested to identify ice masses in four test cases that considers random mass distributions along the blade. The neural network model is able to roughly estimate ice masses, and the error reduces with increasing ice mass on the blade.
Highlights
Wind turbine installations in the northeastern and mid-Atlantic U.S, Canada, Northern Europe and other high altitude areas are increasing due to good wind resources
The natural frequencies estimated in the fourteen test cases are given as an input to the four neural network models designed in the last section to identify added masses
As the actual added mass values used in the experiment and the identified mass values in these cases are known, a metric called the weighted absolute percentage error (WAPE), as defined in Equation (4), is calculated for each test case
Summary
Wind turbine installations in the northeastern and mid-Atlantic U.S, Canada, Northern Europe and other high altitude areas are increasing due to good wind resources. Energies 2017, 10, 184 conditions in these sites in winters increase the risk of ice accretion on wind turbines. Ice accumulates on the wind turbine blades when moisture in the air impacts the cold surface of the blades. Icing of the rotor blades results in reduced turbine power output as icing reduces the lift force and increases the drag force [2,3]. Etemaddar et al [5] investigated the effects of atmospheric ice accumulation on the aerodynamic performance and structural response of a wind turbine, and they predicted that the relative change in mean value is bigger than the change in standard deviation for most of the response quantities (rotor speed, torque, power, thrust and structural loads) of the iced blade. Alsabagh et al [6] considered different ice mass distributions as defined in the ISO
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have