Abstract

A novel numerical/analytical approach to study geometrically nonlinear vibrations of shells with variable thickness of layers is proposed. It enables investigation of shallow shells with complex forms and different boundary conditions. The proposed method combines application of the R-functions theory, variational Ritz’s method, as well as hybrid Bubnov–Galerkin method and the fourth-order Runge–Kutta method. Mainly two approaches, classical and first-order shear deformation theories of shells are used. An original scheme of discretization regarding time reduces the initial problem to the solution of a sequence of linear problems including those related to linear vibrations with a special type of elasticity, as well as problems governed by non-linear system of ordinary differential equations. The proposed method is validated by the investigation of test problems for shallow shells with rectangular planform and applied to new vibration problems for shallow shells with complex planforms and variable thickness of layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.