Abstract

The biodegradation of guar gum by microorganisms sourced from coalbeds can result in low-temperature gel breaking, thereby reducing reservoir damage. However, limited attention has been given to the influence of salinity on the synergistic biodegradation of coal and guar gum. In this study, biodegradation experiments of guar gum and lignite were conducted under varying salinity conditions. The primary objective was to investigate the controlling effects and mechanisms of salinity on the synergistic biodegradation of lignite and guar gum. The findings revealed that salinity had an inhibitory effect on the biomethane production from the co-degradation of lignite and guar gum. The biomethane production declined with increasing salinity levels, decreasing from 120.9 mL to 47.3 mL. Even under 20 g/L salt stress conditions, bacteria in coalbeds could effectively break the gel and the viscosity decreased to levels below 5 mPa s. As salinity increased, the removal rate of soluble chemical oxygen demand (SCOD) decreased from 55.63% to 31.17%, and volatile fatty acids (VFAs) accumulated in the digestion system. High salt environment reduces the intensity of each fluorescence peak. Alterations in salinity led to changes in microbial community structure and diversity. Under salt stress, there was an increased relative abundance of Proteiniphilum and Methanobacterium, ensuring the continuity of anaerobic digestion. Hydrogentrophic methanogens exhibited higher salt tolerance compared to acetoclastic methanogens. These findings provide experimental evidence supporting the use of guar gum fracturing fluid in coalbeds with varying salinity levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.