Abstract
Titanium aluminides, particularly the Ti-48Al-2Cr-2Nb alloy, have drawn significant attention for their potential in high-temperature aerospace and automotive applications due to their exceptional performances and reduced density compared to nickel-based superalloys. However, their intermetallic nature poses challenges such as limited room-temperature ductility and fracture toughness, limiting their widespread application. Additive manufacturing, specifically Electron Beam Melting (EBM), has emerged as a promising method for producing complex-shaped components of titanium aluminides, overcoming challenges associated with conventional production methods. This work investigates the fracture behavior of Ti-48Al-2Cr-2Nb specimens with different microstructures, including duplex and equiaxed, under tensile and high-cycle fatigue at elevated temperatures. Fracture surfaces were analyzed to distinguish between static and dynamic fracture modes. A novel method, employing confocal microscopy acquisitions, is proposed to correlate surface roughness parameters with the causes of failure, offering new insights into the fracture mechanisms of titanium aluminides. The results reveal significant differences in roughness values between the propagation and fracture zones for all the temperatures and microstructure tested. At 650 °C, the crack propagation zone exhibits lower Sq values than the fracture zone, with the fracture zone showing more pronounced roughness, particularly for the equiaxed microstructure. However, at 760 °C, the difference in Sq values between the propagation and fracture zones becomes more pronounced, with a more substantial increase in Sq values in the fracture zone. These findings contribute to understanding fracture behavior in titanium aluminides and provide a predictive framework for assessing structural integrity based on surface characteristics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have