Abstract

Vegetation indices (VIs) related to plant greenness have been studied extensively for the remote detection of foliar nitrogen content. Yet, the potential of chlorophyll fluorescence (ChlF) and photoprotection-based indices such as the photochemical reflectance index (PRI) or the chlorophyll/carotenoid index (CCI) for the detection of a wide range of nutrients remains elusive. We measured the dynamics of foliar macro- and micronutrient contents in potato plants as affected by fertilization and water stress, along with leaf and canopy level observations of spectral reflectance and ChlF (or solar-induced fluorescence). ChlF and photoprotection-related indices were more strongly related to a wide range of foliar nutrient contents compared to greenness-based indices. At the leaf level, relationships were largely mediated by foliar chlorophyll contents (Cab) and leaf morphology, which resulted in two contrasting groupings: a group dominated by macronutrients N, P, K, and Mg that decreased during canopy development and was positively correlated with Cab, and a group including Cu, Mn, Zn, and S that increased and was negatively related to Cab. At the canopy-level, spectral indices were additionally influenced by canopy structure, and so their capacity to detect foliar nutrient contents depends on the spatiotemporal covariation between foliar Cab, morphology, and canopy structure within the observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.