Abstract

A normal-mode helical antenna (NMHA) has been applied in some small devices such as tire pressure monitoring systems (TPMS) and radio frequency identification (RFID) tags. Previously, electrical characteristics of NMHA were obtained through electromagnetic simulations. In practical design of NMHA, equational expressions for the main electrical characteristics are more convenient. Electrical performances of NMHA can be expressed by a combination of a short dipole and small loops. Applicability of equations for a short dipole and a small loop to very small normal-mode helical antennas such as antennas around 1/100 wavelengths was not clear. In this paper, accuracies of equations for input resistances, antenna efficiency, and axial ratios are verified by comparisons with electromagnetic simulation results by FEKO software at 402 MHz. In addition, the structure of the antenna equal to 0.021 λ is fabricated, and measurements are performed to confirm the design accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.