Abstract
The single polarization vortex structure in nanowire can be used to store binary data in Non-Volatile Ferroelectric Random Access Memories (NVFRAM or FRAM). However, at the nanoscale, mechanical strains or geometry defects (cracks) can affect the polarization vortex and they are one of the reasons to reduce the service life as well as the reliability of the device. In this study, the atomic simulation method using the interactive potential function based on the core-shell model is selected to investigate the effects of strain, cracks and domain wall deviations (DW) on the single polarization vortex in PbTiO3 (PTO) nanowires. The results obtained showed that the polarization vortex can appear or disappear depending on the position and size of the crack. Deviations in the DW position make the polarization vortex change the size and shape. Besides, the magnitude of the vortex investigated increases under tension strain and decreases under compression strain. Especially, in large compression strain (10%), the vortex can be disappeared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JST: Engineering and Technology for Sustainable Development
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.