Abstract

Dominant selectable markers are beneficial for transformation of many fungi, particularly those model species where repeated transformations may be required. A carboxin resistance allele of the Coprinopsis cinerea sdi1 gene, encoding the iron-sulphur protein subunit of succinate dehydrogenase, was developed by introducing a suitable point mutation in the histidine block responsible for binding of the associated iron ion. This modified gene was used successfully to confer carboxin resistance upon transformation of C. cinerea protoplasts. Plasmids previously used to establish hygromycin transformation systems of several basidiomycete species, such as pAN7-1 and phph004, failed to give rise to hygromycin-resistant transformants of C. cinerea, whilst pPHT1 was successful. Sequencing of these constructs showed that the hygromycin resistance gene in pAN7-1 and phph004 had been modified removing the codons encoding two lysine residues following the N-terminal methionine. Replacement of the deleted 6 bp (AAA AAG) in the truncated hph gene led to generation of hygromycin-resistant transformants indicating the importance of these two codons for expression in C. cinerea. Phleomycin-resistant (ble) transformants were also obtained, but only with the intron-containing construct pblei004, showing that an intron is necessary to obtain phleomycin-resistant C. cinerea. This contrasts with hygromycin-resistance, where introns are not required for expression, emphasising the variability in importance of these elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.