Abstract

Some studies provide evidence that humans could actively exploit the alleged technological advantages of autonomous vehicles (AVs). This implies that humans may tend to interact differently with AVs as compared to human driven vehicles (HVs) with the knowledge that AVs are programmed to be risk-averse. Hence, it is important to investigate how humans interact with AVs in complex traffic situations. Here, we investigated whether participants would value interactions with AVs differently compared to HVs, and if these differences can be characterized on the behavioral and brain-level. We presented participants with a cover story while recording whole-head brain activity using fNIRS that they were driving under time pressure through urban traffic in the presence of other HVs and AVs. Moreover, the AVs were programmed defensively to avoid collisions and had faster braking reaction times than HVs. Participants would receive a monetary reward if they managed to finish the driving block within a given time-limit without risky driving maneuvers. During the drive, participants were repeatedly confronted with left-lane turning situations at unsignalized intersections. They had to stop and find a gap to turn in front of an oncoming stream of vehicles consisting of HVs and AVs. While the behavioral results did not show any significant difference between the safety margin used during the turning maneuvers with respect to AVs or HVs, participants tended to be more certain in their decision-making process while turning in front of AVs as reflected by the smaller variance in the gap size acceptance as compared to HVs. Importantly, using a multivariate logistic regression approach, we were able to predict whether the participants decided to turn in front of HVs or AVs from whole-head fNIRS in the decision-making phase for every participant (mean accuracy = 67.2%, SD = 5%). Channel-wise univariate fNIRS analysis revealed increased brain activation differences for turning in front of AVs compared to HVs in brain areas that represent the valuation of actions taken during decision-making. The insights provided here may be useful for the development of control systems to assess interactions in future mixed traffic environments involving AVs and HVs.

Highlights

  • A majority of vehicle accidents are caused by human errors (Singh, 2018)

  • This paper aims to examine whether these potential differences in human-human and human-autonomous vehicle interactions can be characterized from behavior and neurophysiological whole-head fNIRS brain activation measurements

  • Another possible explanation could be that the participants potentially tried to exploit the defensive programming behavior and driving performance of autonomous vehicles (AVs) solely based on the cover story to gain a temporal advantage during the drive and achieve the bonus

Read more

Summary

Introduction

A majority of vehicle accidents are caused by human errors (Singh, 2018). A long-held belief is that the introduction of autonomous vehicles (AVs) in driving will reduce human errors, leading to an overall improvement in terms of driving performance and safety for all traffic participants. Until a time comes when only AVs travel on roads, human driven vehicles (HVs) and AVs will co-exist in traffic environments. In such mixed traffic environments, the interaction between humans and autonomous agents remains extremely important. The pedestrian or the human driver knows that AVs are programmed to be riskaverse and stop immediately if it detects an obstacle in its path Armed with this knowledge, drivers and pedestrians may act with impunity while interacting with AVs. Several studies have reported a shift in behavior when humans are interacting with autonomous agents compared to other human agents suggesting that humans might evaluate their own actions differently depending on the type of traffic agent involved. Overreliance occurs when a driver tends to rely uncritically on the automation without recognizing its limitations or fails to monitor the automation system’s behavior (Saffarian et al, 2012; Cunningham and Regan, 2015)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call