Abstract
LAG3 and PD1 are both immunomodulatory receptor that act by inhibiting activation of T cells, producing a more immunosuppressive environment. Even with the recent clinical success of PD1 and LAG3 co-blockade, signal transduction downstream of LAG3 remains largely unknown. We have leveraged an engineered Jurkat (T cell) and Raji (APC) co-culture system to assess simultaneous blockade of PD1 and LAG3 pathways using antibodies. RNA-Seq analysis of cell pellets individually treated with LAG3 or PD1 antibodies revealed modest immune activation however, 5-fold more genes were upregulated upon combination treatment. There were increases in costimulatory genes like CD28, CD5, CD6 as well as intracellular signaling molecules like LCP2 and ITK. Given the role of ERK in immune activation of T cells, pERK levels of Jurkat cells in the assay were evaluated. A very modest activation of pERK was observed with anti-LAG3 compared to anti-PD1 but a combination treatment resulted in prolonged ERK phosphorylation. Treatment of Jurkat cells with a commercial phosphatase inhibitor NSC87877 which can impact many phosphatases resulted in immune activation, measured by increased IL2 levels, only in the presence of LAG3. When NSC87877 was combined with the PD1 antibody, it could phenocopy combination benefit of PD1 and LAG3 blocking antibodies. CD28 has a recognized role in PD1 signaling but the impact on LAG3 signaling remains unknown. CD28 knockout in Jurkat cells affected overall IL-2 response of both LAG3 and PD1 antibody treatment but still retained combination benefit. Taken together this reductionist system highlights differences in downstream effects of LAG3 and PD1 blockade and we believe that the assay may have further utility to dissect convergence of both signaling pathways and augment studies in primary cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have