Abstract

This paper attempts to explore carbon tax pilot in Yangtze River Delta (YRD) urban agglomerations based on a novel energy-saving and emission-reduction (ESER) system with carbon tax constraints, which has not yet been discussed in present literature. A novel carbon tax attractor is achieved through the discussion of the dynamic behavior of the new system. Based on the genetic algorithm-back propagation neural network, the quantitative coefficients of the actual system are identified. The scenario analysis results show that, under the same tax rate and constraint conditions, the ESER system in YRD urban agglomerations is superior to the average case in China, in which the impacts on economic growth are almost the same. The former’s energy intensity is lower and the shock resistance is stronger. It is found that economic property of YRD urban agglomerations is the main cause for the ESER system of YRD urban agglomerations being superior. In the current YRD urban agglomerations’ ESER system, energy intensity cannot be adjusted to an ideal level by commercialization management and government control; however, it is under effective control of carbon tax incentives. Therefore, strengthening the economic property of YRD urban agglomerations and effective utilization of carbon tax incentives could perfectly control energy intensity, without obvious potential negative impact on economic growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.