Abstract

Prefabricated temporary buildings are a promising solution for post-disaster scenarios for their modularity, sustainability and transportation advantages. However, their low thermal mass building envelope shows a fast response to heat flux excitations. This leads to the risk of not meeting the occupant comfort and HVAC energy-saving requirements. The literature shows different measures implementable in opaque surfaces, like vacuum insulation panels (VIPs), phase change materials (PCMs) and switchable coatings, and in transparent surfaces (switchable glazing) to mitigate thermal issues, like overheating, while preserving the limited available internal space. This paper investigates the energy and overheating performance of the mentioned interventions by using building performance simulation tools to assess their effectiveness. The optimization also looks at the transportation flexibility of each intervention to better support the decision maker for manufacturing innovative temporary units. The most energy-efficient measures turn to be VIPs as a better energy solution for winter and PCMs as a better thermal comfort solution for summer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call