Abstract

This research investigated the adverse effects of neonicotinoids on the Northwestern salamander (Ambystoma gracile; NWS) after acute and subchronic exposures during early aquatic life stages via whole organism (i.e., growth, development) and molecular (i.e., gene expression) level endpoints. In a 96-h exposure, NWS larvae were exposed to four imidacloprid concentrations (250, 750, 2250, 6750µg/L) and a water control treatment, and no effects on survival, body weight, snout-vent length (SVL), and total body length were observed. However, a significant 1.70- and 2.33-fold decrease in thyroid receptor β (TRβ) mRNA expression levels were detected in the larvae exposed to 750 and 2250µg/L imidacloprid, respectively, compared with the larvae in the water control. In subsequent subchronic experiments, NWS larvae were exposed for 35days to imidacloprid alone and an equal part mixture of neonicotinoids (imidacloprid, clothianidin, and thiamethoxam (ICT)) at three concentrations (10, 100 and 1000µg total neonicotinoids/L) and a water control. In these experiments, there were no effects on larval survival, body weight, SVL, and total body length. However, advanced development of larvae in the 100µg/L imidacloprid treatment was observed compared with the control after 35-day imidacloprid exposure, providing some evidence of disruption of the thyroid endocrine axis at an environmentally relevant concentration. Ultimately, there is a paucity of studies conducted examining the sensitivity of salamanders to pollutants; thus, this study reports novel findings that will contribute to understanding the sensitivity of a Caudate amphibian model to a common environmental pollutant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call