Abstract

This paper investigated the ability of lactic acid bacteria (LAB) and Bifidobacterium to remove acrylamide (AA). The mechanism(s) of the AA removal was examined by various microscopic techniques. After screening 40 isolates, Bifidobacterium breve and Lactiplantibacillus plantarum exhibited higher acrylamide (AA) reduction by 35% and 36%, respectively. pH (4.5–6.5), incubation temperature (32–42 °C), incubation time (14–22 h), and NaCl (0–3 g/100 g) were employed using Box-Behnken design (BBD) to investigate the AA removal. As a result, the AA removal ranged from 47.7 to 65.0% for B. breve and 5.8%–8.0% for Lb. plantarum. Under the in vitro gastrointestinal conditions, B. breve removed up to 41.2% of acrylamide while Lb. plantarum reduced around 53.5% of acrylamide. In addition, both strains tolerated low pH levels. TEM images showed that cells of both bacteria increased after culturing with acrylamide. Elements analysis of Lb. plantarum and the most dominant elements are C, N, and O with atomic % of 41.95, 17.63, and 31.66, respectively. FTIR exhibited that CO, C–O, and N–H were main functional groups associated with AA adsorption in Lb. plantarum and B. breve. The zeta potential values of B. breve and Lb. plantarum are −15.47 and −25.87 mV, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.