Abstract

Global warming contributes to an increased frequency and severity of droughts. Drought emerges as a highly prevalent natural calamity, distinguished by its formidable disruptive impact and the capacity to trigger considerable economic setbacks. Understanding the spatiotemporal characteristics of droughts and clarifying the driving role of atmospheric circulation on droughts is vital for agricultural, hydrological, ecological, and socio-economic systems. Leveraging meteorological data from 36 stations in the middle reaches of the Yellow River Basin from 1961 to 2020, we employed the Standardized Precipitation Evapotranspiration Index (SPEI) to calculate drought occurrence. Concurrently, we explored the influence of atmospheric circulation on the SPEI. The findings of our study underscore a concerning trend of worsening drought conditions within the study area. We discovered a significant correlation between the duration and severity of drought (R = 0.83, p < 0.001); longer durations often corresponded to higher levels of severity. Turning our attention to atmospheric dynamics, the Nino Eastern Pacific index (NE) emerged as a critical driver of SPEI dynamics (the contribution of NE to SPEI was 0.22), significantly impacting drought patterns. In conclusion, the study significantly contributes to our comprehension of the evolving drought patterns under the influence of global warming. The findings can provide valuable information for water resource management and drought disaster control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.