Abstract
Bone tissue engineering has been proposed as a promising solution for healing of bone fractures. An important aspect of bone tissue engineering is the implantable scaffolds that participate in the regeneration and repair of bone tissue. In this study, the composite scaffolds of gelatin- nanocellulose loaded with nanohydroxyapatite and simvastatin (as the osteoinductive component) were fabricated using freeze- drying method. Scaffolds were characterized in terms of morphology, mechanical, biodegradability, water absorption capacity, and simvastatin release characteristics. Also, the biocompatibility and differentiation potential of the scaffolds were evaluated on human bone marrow-derived mesenchymal stem cells using the MTT assay and alizarin red staining, respectively. The simvastatin loaded scaffolds showed a sustained release profile in vitro up to 216 h. The results of BMSCs differentiation by alizarin red staining showed significant differences between the simvastatin loaded group and other groups. Moreover, the results of MTT assay verified cytocompatibility and non-toxicity of the scaffolds. Therefore, the gelatin-nano cellulose composite scaffolds loaded with hydroxyapatite and simvastatin may be considered promising for use in bone tissue engineering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have