Abstract

The switching performance of 0.10 /spl mu/m CMOS devices operating at room temperature has been discussed on the basis of both experimental and simulated results. The measured propagation delay time of a 0.10 /spl mu/m gate length CMOS has been quantitatively divided into intrinsic and parasitic components for the first time. The results have shown that the drain junction capacitance strongly affects the propagation delay time in the present 0.10 /spl mu/m CMOS. The switching performance of a 0.10 /spl mu/m ground rule CMOS has been simulated by using device parameters extracted from the experimental results. In the 0.10 /spl mu/m ground rule CMOS, it has been shown that an increase of the contact resistance will degrade the propagation delay time, which is one of the most essential problems in further device miniaturization. It has been also demonstrated that even if the specific contact resistance /spl rho//sub c/ is reduced to be less than 1/spl times/10/sup -7/ /spl Omega/ cm, further reduction of the gate overlap capacitance C/sub ov/ will be required to achieve the propagation delay time to be less than 10 ps in the 0.10 /spl mu/m ground rule CMOS at room temperature. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.