Abstract

Inverted repeats (IRs) and trinucleotide repeats (TNRs) that have the potential to form secondary structures in vivo are known to cause genome rearrangements. Expansions of TNRs in humans are associated with several neurological disorders. Both IRs and TNRs stimulate spontaneous unequal sister-chromatid exchange (SCE) in yeast. Secondary structure-associated SCE events occur via double-strand break repair. Here we show that the rate of spontaneous IR-stimulated unequal SCE events in yeast is significantly reduced in strains with mutations in the mismatch repair genes MSH2 or MSH3, but unaffected by a mutation in the nucleotide excision-repair gene RAD1. Non-IR-associated unequal SCE events are increased in both MMR- and rad1-mutant cells; however, SCE events for both IR- and non-IR-containing substrates occur at a higher level in the exo1 background. Our results suggest that spontaneous SCE occurs by a template switching mechanism. Like IRs, TNRs have been shown to generate double-strand breaks (DSBs) in yeast. TNR expansions in mice are MSH2-dependent. Since IR-mediated SCE events are reduced in msh2 cells, we propose that TNR expansion mutations arise when DSBs are repaired using the sister or the homolog as a template.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call