Abstract
In organic light-emitting diodes (OLEDs), only 25% of electrically generated excitons are in a singlet state, S1, and the remaining 75% are in a triplet state, T1. In thermally activated delayed fluorescence (TADF) chromophores the transition from the nonradiative T1 state to the radiative S1 state can be thermally activated, which improves the efficiency of OLEDs. Chromophores with inverted energy ordering of S1 and T1 states, S1 < T1, are superior to TADF chromophores, thanks to the absence of an energy barrier for the transition from T1 to S1. We benchmark the performance of time-dependent density functional theory using different exchange-correlation functionals and find that scaled long-range corrected double-hybrid functionals correctly predict the inverted singlet-triplet gaps of N-substituted phenalene derivatives. We then show that the inverted energy ordering of S1 and T1 is an intrinsic property of graphitic carbon nitride flakes. A design strategy of new chromophores with inverted singlet-triplet gaps is proposed. The color of emitted light can be fine-tuned through flake size and amine substitution on flake vertices.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have