Abstract

BackgroundInverted Internal Limiting Membrane (ILM)-flap technique would seem to lead to higher closure rate and better visual acuity than traditional procedure with ILM peeling for the treatment of large macular hole (LMH). Visual acuity recovery does not reveal many other functional changes related to surgical approach. Our purpose was to evaluate macular function and morphology over a 1-year follow-up after inverted ILM-flap technique for LMH by using microperimetry in order to predict visual prognosis.MethodsThis study was a prospective unrandomized single-center study. 23 eyes of 22 patients with idiopathic LMH, with a minimum diameter ranging from 400 to 1000 μm, were included. All patients underwent vitrectomy with inverted ILM-flap technique and gas tamponade. We analyzed macular hole closure rate and functional outcomes including best-corrected visual acuity (BCVA), macular sensitivity (MS) at central 12° and central macular sensitivity (CMS) at central 4°, and fixation behavior as bivariate contour ellipse area (BCEA, degrees2) at 68%, 95%, and 99% of fixation points measured by microperimeter, over a follow-up of 12 months.ResultsThe macular hole closure rate was 98%. The BCVA improved from 20/230 (Logmar, 1.06 ± 0.34) to 20/59 (logMar, 0.47 ± 0.45) at last follow-up (p < 0.001). Retinal sensitivity and BCEA significantly improved (MS, p = 0.001; CMS, p < 0.0001; BCEA: 68%, p < 0.01; 95%, p < 0.01; 99%, p = 0.001). Multiple stepwise regression analysis showed the final BCVA was significantly associated with macular hole size (β = 0.002, p = 0.03), preoperative MS (β = − 0.06, p = 0.001) and BCEA at 95% and 99% of fixation points (β = − 0.12, p = 0.01; β = 0.06, p = 0.01).ConclusionsInverted ILM-flap technique for LMH results in good morphologic and functional outcomes. Macular hole size and microperimetric parameters as preoperative MS and BCEA have a predictive role on post-surgical visual acuity.

Highlights

  • Inverted Internal Limiting Membrane (ILM)-flap technique would seem to lead to higher closure rate and better visual acuity than traditional procedure with ILM peeling for the treatment of large macular hole (LMH)

  • Sborgia et al Int J Retin Vitr (2019) 5:44 suggested that inverted ILM-flap technique may be better for the treatment of LMHs considering morphologic and functional outcomes [10,11,12,13]

  • The mean central macular sensitivity (CMS) improved from 6.85 ± 3.87 dB at baseline to 8.70 ± 4.38 dB at 1 month (p = 0.03), 10.05 ± 4.86 dB at 3 months (p = 0.001), 11.09 ± 4.61 dB at 6 months (p < 0.001), and 11.74 ± 4.90 dB at 12 months (p < 0.001) (Fig. 3)

Read more

Summary

Introduction

Inverted Internal Limiting Membrane (ILM)-flap technique would seem to lead to higher closure rate and better visual acuity than traditional procedure with ILM peeling for the treatment of large macular hole (LMH). Our purpose was to evaluate macular function and morphology over a 1-year follow-up after inverted ILM-flap technique for LMH by using microperimetry in order to predict visual prognosis. Despite high closure rate and visual acuity recovery, functional changes after macular hole surgery are really complex. Visual acuity recovery does not reveal many other functional changes related to macular pathologies and surgical manipulations. The aim of this study was to evaluate morphologic and functional outcomes after vitrectomy with inverted ILM-flap technique for LMH by using microperimetry in order to predict visual prognosis

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.