Abstract
The development of biomaterials for regenerating neurons from induced pluripotent stem (iPS) cells is crucial to the potential therapy for traumatic injury to nervous system. This study aims to guide differentiation of iPS cells into neuron-lineage cells in inverted colloidal crystal (ICC) scaffolds containing alginate, poly(γ-glutamic acid), and surface CSRARKQAASIKVAVSADR (peptide). The differentiation of iPS cells in ICC constructs was characterized by staining of embryonic and neuronal markers. The results indicated that hexagonal crystals of polystyrene microspheres shaped hydrogels into ICC scaffolds with interconnected pores. CSRARKQAASIKVAVSADR slightly enhanced the adhesion of iPS cells in ICC constructs and yielded no variation in the viability of iPS cells. Cultured ICC constructs with CSRARKQAASIKVAVSADR reduced the expression of stage-specific embryonic surface antigen-1 and raised the expression of β III tubulin of differentiating iPS cells. The induction with CSRARKQAASIKVAVSADR in ICC topography can improve the differentiation of iPS cells toward neurons for nerve tissue engineering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have