Abstract
Abstract In this paper, we present conditions for the stabilization and regulation of the tracking error for an n -dimensional minimum-phase system preceded by a Prandtl–Ishlinskii hysteresis operator. A general controller structure is considered; however, we assume that an integral action is present. The common Lyapunov function theorem is utilized together with a Linear Matrix Inequality (LMI) condition to show that, under suitable conditions, the tracking error of the system goes to zero exponentially fast when a constant reference is considered. A key feature of this LMI condition is that it does not require the hysteresis effect to be small, meaning that hysteresis inversion is not required. We use this condition together with a periodicity assumption to prove that a servocompensator-based controller can stabilize the system without using hysteresis inversion. Additionally, we draw parallels between our LMI condition and passivity-based results achieved in the literature. We then verify our LMI results in simulation, where we show that the LMI condition can accurately predict the stability margins of a system with hysteresis. Finally, we conduct experiments using a servocompensator-based controller, where we verify the stability of the system and achieve a mean tracking error of 0.5 % for a 200 Hz sinusoidal reference.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have