Abstract

The inversion of induction tool measurements using the distorted Born iterative method (DBIM) and the conjugate gradient-fast Fourier-Hankel transform (CG-FFHT) is described. The inverse problem is formulated in terms of an integral equation of scattering where the unknown to be sought is the conductivity in the rock formation, when the measurements along a borehole axis are performed. The nonlinear problem is linearized at each stage using the distorted Born approximation. The inhomogeneous medium Green's function in the distorted Born approximation is found by solving a volume integral equation using the CG-FFHT method, which allows a rapid solution to a large problem with reduced computational complexity and memory requirement. In this manner, the inverse problem is solved with a computational complexity proportional to N/sub tl/N log N where N/sub tl/ is the number of transmitter locations used in the data collection and N is the total number of pixels used to model the unknown formation. The memory requirement is of order NN/sub tl/.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.