Abstract
Since the launch of sensors with angular observation capabilities, such as CHRIS and MISR, the additional potential of multi-angular observations for vegetation structural and biochemical variables has been widely recognised. Various methods have been successfully implemented to estimate forest biochemical and biophysical variables from atmospherically-corrected multi-angular data, but the use of physically based radiative transfer (RT) models is still limited. Because both canopy and atmosphere have an anisotropic behaviour, it is important to understand the multi-angular signal measured by the sensor at the top of the atmosphere (TOA). Coupled canopy–atmosphere RT models allow linking surface variables directly to the TOA radiance measured by the sensor and are therefore very interesting tools to use for estimating forest variables from multi-angular data. We investigated the potential of TOA multi-angular radiance data for estimating forest variables by inverting a coupled canopy–atmosphere physical RT model. The case study focussed on three Norway spruce stands located at the Bily Kriz experimental site (Czech Republic), for which multi-angular CHRIS and field data were acquired in September 2006. The soil–leaf–canopy RT model SLC and the atmospheric model MODTRAN4 were coupled using a method allowing to make full use of the four canopy angular reflectance components provided by SLC. The TOA radiance simulations were in good agreement with the spectral and angular signatures measured by CHRIS. Singular value decompositions of the Jacobian matrices showed that the dimensionality of the variable estimation problem increased from 3 to 6 when increasing the number of observation angles from 1 to 4. The model inversion was conducted for two cases: 4 and 7 variables. The most influential parameters were chosen as free variables in the look-up tables, namely: vertical crown cover (Cv), fraction of bark material (fB), needle chlorophyll content (needleCab), needle dry matter content (needleCdm) for the 4-variable case, and additionally, tree shape factor (Zeta), dissociation factor (D), and needle brown pigments content (needleCs) in the 7-variable case. All angular combinations were tested, and the best estimates were obtained with combinations using two or three angles, depending on the number of variables and on the stand used. Overall, this case study showed that, although making use of its full potential is still a challenge, TOA multi-angular radiance data do have a higher potential for variable estimation than mono-angular data.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.