Abstract

Integrating long-term observational data analysis with numerical simulations of dam operations provides an effective approach to dam safety evaluation. However, analytical results are often subject to errors due to challenges in accurately surveying and modeling the foundation, as well as temporal changes in foundation properties. This paper proposes a concrete dam displacement separation model that distinguishes between deformation caused by foundation restraint and that induced by external loads. By combining this model with intelligent optimization techniques and long-term observational data, we can identify the actual mechanical parameters of the dam and conduct structural health assessments. The proposed model accommodates multiple degrees of freedom and is applicable to both two- and three-dimensional dam modeling. Consequently, it is well-suited for parameter identification and health diagnosis of concrete gravity and arch dams with extensive observational data. The efficacy of this diagnostic model has been validated through computational case studies and practical engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.